Matrix models for stationary Gromov–Witten invariants of the Riemann sphere

نویسندگان

چکیده

Inspired by recent formul\ae\ of Dubrovin, Yang, and Zagier, we interpret the tau function enumerating stationary Gromov-Witten invariants $\mathbb{P}^1$ as an isomonodromic associated with a difference equation. As byproduct obtain analogue Kontsevich matrix model for this function. A connection Charlier ensemble is also considered.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the application of multivariate probit models for conditional claim-types (the case study of iranian car insurance industry)

هدف اصلی نرخ گذاری بیمه ای تعیین نرخ عادلانه و منطقی از دیدگاه بیمه گر و بیمه گذار است. تعین نرخ یکی از مهم ترین مسایلی است که شرکتهای بیمه با آن روبرو هستند، زیرا تعیین نرخ اصلی ترین عامل در رقابت بین شرکتها است. برای تعیین حق بیمه ابتدا می باید مقدار مورد انتظار ادعای خسارت برای هر قرارداد بیمه را برآورد کرد. روش عمومی مدل سازی خسارتهای عملیاتی در نظر گرفتن تواتر و شدت خسارتها می باشد. اگر شر...

15 صفحه اول

Rotations of the Riemann Sphere

The set Rot(S) of such rotations forms a group, most naturally viewed as a subgroup of GL3(R). Showing this requires some linear algebra. Recall that if m ∈ M3(R), meaning that m is a 3-by-3 real matrix, then its transpose m is obtained by flipping about the diagonal. That is, mij = mji for i, j = 1, 2, 3. The transpose is characterized by the more convenient condition 〈mx, y〉 = 〈x,my〉 for all ...

متن کامل

Matrix Models on the Fuzzy Sphere

Field theory on a fuzzy noncommutative sphere can be considered as a particular matrix approximation of field theory on the standard commutative sphere. We investigate from this point of view the scalar φ theory. We demonstrate that the UV/IR mixing problems of this theory are localized to the tadpole diagrams and can be removed by an appropiate (fuzzy) normal ordering of the φ vertex. The pert...

متن کامل

Bernoulli matrix approach for matrix differential models of first-order

The current paper contributes a novel framework for solving a class of linear matrix differential equations. To do so, the operational matrix of the derivative based on the shifted Bernoulli polynomials together with the collocation method are exploited to reduce the main problem to system of linear matrix equations. An error estimation of presented method is provided. Numerical experiments are...

متن کامل

Branched Covers of the Riemann Sphere

A (real) manifold of dimension n is a (Hausdorff, second countable) space which is locally homeomorphic to an open subset of Rn. If we wish to make a definition of a complex manifold, we could replace Rn by Cn, but then we see that we have simply given the definition of an even-dimensional real manifold. As with real differentiable manifolds, the key is to add some additional structure via a we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinearity

سال: 2021

ISSN: ['0951-7715', '1361-6544']

DOI: https://doi.org/10.1088/1361-6544/abd85e